AEAO Tetrad Configuration
Configure the four pillars of Sematryx's AEAO Engine: Agentic, Expository, Autodidactic, and Domain Extension. Control compute cost vs capability trade-offs with granular configuration options.
The AEAO Tetrad
Sematryx's AEAO Engine is built on four central pillars that work together to provide enterprise-grade optimization:
Agentic Intelligence
Multi-agent coordination for strategy selection. Research agents, validation engineers, and performance analysts collaborate to provide consensus-based optimization strategies.
- • Multi-agent collaboration
- • Consensus-based strategy selection
- • Real-time performance analysis
- • Autonomous decision-making
Expository Intelligence
Comprehensive explanation of all optimization decisions with configurable explanation levels (0-5) for compute cost control.
- • Configurable explanation levels (0-5)
- • Natural language summaries
- • Technical decision logs
- • Interactive visualizations
- • 22-26% performance boost with async processing
Autodidactic Intelligence
Self-improvement and continuous learning from optimization experience. Problem signature detection, strategy variation, and cross-problem learning.
- • Problem signature detection
- • Strategy variation
- • Cross-problem learning
- • Performance memory
- • Meta-learning capabilities
Domain Extension
Business domain libraries for rapid enterprise adoption. Engine-domain separation enables core optimization algorithms across 13+ business domains.
- • 13+ business domains
- • Automatic code generation
- • FastAPI deployment
- • Pattern recommendations
- • Production-ready templates
Preset Configurations
Quick-start with predefined configurations optimized for different use cases:
from aeao import aeao
# Use preset configuration
result = aeao(
objective_function=sphere,
bounds=[[-5, 5], [-5, 5]],
preset="production" # development, production, research, enterprise, minimal
)Available Presets
Simple Configuration
Enable specific tetrad pillars with simple boolean flags and basic parameters:
from aeao import aeao
# Enable specific tetrad pillars
result = aeao(
objective_function=sphere,
bounds=[[-5, 5], [-5, 5]],
use_agentic_intelligence=True,
use_autodidactic_intelligence=True,
explanation_level=3
)Simple Configuration Options
- use_agentic_intelligence (bool): Enable multi-agent coordination
- use_expository_intelligence (bool): Enable explainability
- use_autodidactic_intelligence (bool): Enable learning system
- use_domain_extension (bool): Enable domain libraries (default: True)
- explanation_level (int, 0-5): Detail level for explanations (0=off, 5=comprehensive)
Advanced Configuration
Fine-tune every aspect of the Tetrad with complete configuration objects:
from sematryx import sematryx, AEAOTetradCompleteConfig
# Complete custom configuration
config = AEAOTetradCompleteConfig.enterprise()
config.expository.explanation_level = 4
config.agentic.max_agents_per_problem = 5
config.autodidactic.learning_enabled = True
config.domain_extension.use_domain_libraries = True
result = aeao(
objective_function=sphere,
bounds=[[-5, 5], [-5, 5]],
config=config
)Advanced Configuration Options
- • max_agents_per_problem: Maximum number of agents (default: 3)
- • consensus_threshold: Agreement threshold for strategy selection
- • agent_timeout: Timeout for agent responses
- • explanation_level: 0-5 detail level
- • async_explanations: Background processing (default: True)
- • include_visualizations: Generate visual diagnostics
- • natural_language: Enable NLP summaries
- • learning_enabled: Enable learning system
- • cross_problem_learning: Learn across different problems
- • memory_retention: How long to retain learned patterns
- • meta_learning: Enable meta-learning capabilities
- • use_domain_libraries: Enable domain-specific libraries
- • auto_code_generation: Generate domain code automatically
- • domain_patterns: Enable pattern recommendations
REST API Configuration
Configure the Tetrad via REST API requests:
curl -X POST https://api.sematryx.com/v1/optimize \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"objective_function_id": "func_1234567890",
"bounds": [[-10, 10], [-10, 10]],
"max_evaluations": 2000,
"preset": "production",
"tetrad_config": {
"use_agentic_intelligence": true,
"use_expository_intelligence": true,
"use_autodidactic_intelligence": true,
"use_domain_extension": true,
"explanation_level": 3,
"agentic": {
"max_agents_per_problem": 5
},
"autodidactic": {
"learning_enabled": true,
"cross_problem_learning": true
}
}
}'JavaScript SDK Configuration
Configure the Tetrad using the JavaScript SDK:
import { Sematryx } from '@sematryx/javascript-sdk'
const sematryx = new Sematryx('your-api-key')
// Option 1: Use preset
const result = await aeao.optimize({
objective_function: sphere,
bounds: [[-5, 5], [-5, 5]],
preset: 'production'
})
// Option 2: Custom tetrad config
const result = await aeao.optimize({
objective_function: sphere,
bounds: [[-5, 5], [-5, 5]],
tetrad: {
use_agentic_intelligence: true,
use_expository_intelligence: true,
use_autodidactic_intelligence: true,
use_domain_extension: true
},
expository: {
explanation_level: 4
},
agentic: {
max_agents_per_problem: 5
}
})Compute Cost vs Capability Trade-offs
Each Tetrad pillar can be independently enabled or disabled to balance performance and capabilities:
Minimal Cost (minimal preset)
Fastest execution, no AI overhead:
- • All Tetrad pillars disabled
- • Core optimization only
- • ~10-20% faster than full Tetrad
Balanced (production preset)
Good performance with essential capabilities:
- • Agentic + Expository enabled
- • Autodidactic disabled (no learning overhead)
- • Domain Extension enabled
- • Explanation level 2-3
Maximum Capability (research/enterprise preset)
Full capabilities, comprehensive explanations:
- • All Tetrad pillars enabled
- • Maximum agents, full learning
- • Explanation level 4-5
- • All domain libraries active