Optimization API
Solve optimization problems using Sematryx with configurable AI intelligence through the AEAO Tetrad.
Basic Optimization
The simplest way to optimize a function. Define your objective function and bounds, then let Sematryx find the optimal solution.
from aeao import aeao
import numpy as np
# Define your objective function
def sphere(x):
return sum(xi**2 for xi in x)
# Run optimization
result = aeao(
objective_function=sphere,
bounds=[[-5, 5], [-5, 5]],
max_evaluations=1000
)
print(f"Best solution: {result['best_solution']}")
print(f"Best fitness: {result['best_fitness']}")Parameters
- objective_function (required): Function to optimize f(x) → float
- bounds (required): Search bounds [[min1, max1], [min2, max2], ...]
- max_evaluations (optional): Maximum function evaluations (default: 1000)
- mode (optional): "fast", "balanced", or "accurate" (default: "balanced")
AEAO Tetrad Configuration
Configure the four pillars of Sematryx's AEAO Engine intelligence: Agentic, Expository, Autodidactic, and Domain Extension.
from sematryx import sematryx, AEAOTetradCompleteConfig
# Use preset configuration
result = sematryx(
objective_function=sphere,
bounds=[[-5, 5], [-5, 5]],
preset="production" # development, production, research, enterprise, minimal
)
# Or enable specific tetrad pillars
result = aeao(
objective_function=sphere,
bounds=[[-5, 5], [-5, 5]],
use_agentic_intelligence=True,
use_autodidactic_intelligence=True,
explanation_level=3
)
# Or complete custom configuration
config = AEAOTetradCompleteConfig.enterprise()
config.expository.explanation_level = 4
result = aeao(objective_function=sphere, bounds=[[-5, 5], [-5, 5]], config=config)Tetrad Pillars
- 🤖 Agentic Intelligence: Multi-agent coordination for strategy selection
- 📖 Expository Intelligence: Explainability with configurable levels (0-5)
- 🧠 Autodidactic Intelligence: Self-improvement and learning from experience
- 🏗️ Domain Extension: Business domain libraries for rapid adoption
Preset Configurations
- development: Fast iteration, basic explanations
- production: Balanced performance, standard explanations
- research: Maximum capabilities, comprehensive explanations
- enterprise: Full features, advanced monitoring
- minimal: Core optimization only
Domain-Specific Optimization
Use specialized optimization libraries for specific business domains with pre-configured constraints and objectives.
from aeao import financial_optimize, healthcare_optimize, supply_chain_optimize
# Financial portfolio optimization
result = financial_optimize(
problem_type="portfolio",
config={
"assets": ["AAPL", "GOOGL", "MSFT"],
"risk_tolerance": 0.3
},
max_evaluations=2000
)
# Healthcare drug discovery
result = healthcare_optimize(
problem_type="drug_discovery",
config={
"target_protein": "protein_id_123",
"constraints": {"toxicity": "< 0.1"}
}
)
# Supply chain routing
result = supply_chain_optimize(
problem_type="vehicle_routing",
config={
"locations": [...],
"vehicle_capacity": 1000
}
)Available Domains
- Financial: Portfolio optimization, trading strategies, risk management
- Healthcare: Drug discovery, clinical trial design, treatment protocols
- Supply Chain: Vehicle routing, inventory management, warehouse optimization
- AI/ML: Hyperparameter tuning, neural architecture search
- Marketing: Campaign optimization, budget allocation
REST API
Use the REST API for server-side optimization requests. Upload your objective function first, then call the optimize endpoint.
curl -X POST https://api.sematryx.com/v1/optimize \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"objective_function_id": "func_1234567890",
"bounds": [[-10, 10], [-10, 10], [-10, 10]],
"max_evaluations": 2000,
"preset": "production",
"tetrad_config": {
"use_agentic_intelligence": true,
"use_expository_intelligence": true,
"explanation_level": 3
}
}'{
"success": true,
"best_solution": [0.001, -0.002, 0.003],
"best_fitness": 0.000014,
"evaluations": 847,
"duration_seconds": 2.34,
"strategy_used": "shgo",
"tetrad_config": {
"use_agentic_intelligence": true,
"use_expository_intelligence": true,
"use_autodidactic_intelligence": false,
"use_domain_extension": true
},
"features_active": {
"agentic_intelligence": true,
"expository_intelligence": true,
"explanation_level": 2,
"cross_problem_learning": false
}
}Response Format
Optimization Result
- success: Whether optimization succeeded
- best_solution: Optimal parameter values found
- best_fitness: Best objective value achieved
- evaluations: Number of function evaluations used
- duration_seconds: Time taken for optimization
- strategy_used: Optimization algorithm selected
- tetrad_config: Tetrad configuration that was active
- features_active: Which tetrad features were enabled
Advanced Features
Explainability
Get detailed explanations of optimization decisions with configurable explanation levels (0-5).
result = aeao(objective, bounds, explanation_level=4)Self-Improvement
Enable learning from optimization experience to improve performance on repeated problems.
result = aeao(objective, bounds, use_autodidactic_intelligence=True)Multi-Agent Coordination
Use multiple AI agents to collaboratively select the best optimization strategy.
result = aeao(objective, bounds, use_agentic_intelligence=True)GPU Acceleration
Accelerate optimization with GPU/CUDA support for large-scale problems.
result = aeao(objective, bounds, use_gpu_acceleration=True)